Friday, May 24, 2024
HomeNanotechnologyA big-scale machine studying evaluation of inorganic nanoparticles in preclinical most cancers...

A big-scale machine studying evaluation of inorganic nanoparticles in preclinical most cancers analysis


  • Mendes, B. B., Sousa, D. P., Conniot, J. & Conde, J. Nanomedicine-based methods to focus on and modulate the tumor microenvironment. Traits Most cancers 7, 847–862 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobo, D., Robinson, Ok. J., Islam, J., Thurecht, Ok. J. & Corrie, S. R. Nanoparticle-based medicines: a overview of FDA-approved supplies and medical trials thus far. Pharm. Res. 33, 2373–2387 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles within the clinic: an replace. Bioeng. Transl. Med. 4, e10143 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles within the clinic: an replace submit COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Strategies Primers 2, 24 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Meel, R. et al. Sensible most cancers nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janjua, T. I., Cao, Y., Yu, C. & Popat, A. Scientific translation of silica nanoparticles. Nat. Rev. Mater. 6, 1072–1074 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, C. G. A., Kumar, V. G., Dhas, T. S., Karthick, V. & Kumar, C. M. V. Nanomaterials in anticancer functions and their mechanism of motion – a overview. Nanomedicine 47, 102613 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gavas, S., Quazi, S. & Karpiński, T. M. Nanoparticles for most cancers remedy: present progress and challenges. Nanoscale Res. Lett. 16, 173 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faria, M., Björnmalm, M., Crampin, E. J. & Caruso, F. Just a few clarifications on MIRIBEL. Nat. Nanotechnol. 15, 2–3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faria, M. et al. Minimal info reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorenc, A. et al. Machine studying for next-generation nanotechnology in healthcare. Matter 4, 3078–3080 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle supply. Science 377, eabm5551 (2023).

    Article 

    Google Scholar
     

  • Brockow, Ok. et al. Expertise with polyethylene glycol allergy-guided danger administration for COVID-19 vaccine anaphylaxis. Allergy 77, 2200–2210 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellaturay, P., Nasser, S., Islam, S., Gurugama, P. & Ewan, P. W. Polyethylene glycol (PEG) is a reason for anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 51, 861–863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone, C. A. Jr. et al. Speedy hypersensitivity to polyethylene glycols and polysorbates: extra frequent than we’ve got acknowledged. J. Allergy Clin. Immunol. Pract. 7, 1533–1540.e8 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, H. et al. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J. Clin. 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • International Burden of Illness 2019 Most cancers Collaboration. Most cancers incidence, mortality, years of life misplaced, years lived with incapacity, and disability-adjusted life years for 29 most cancers teams from 2010 to 2019: a scientific evaluation for the International Burden of Illness Research 2019. JAMA Oncol. 8, 420–444 (2022).

  • Alvarez, E. M. et al. The worldwide burden of adolescent and younger grownup most cancers in 2019: a scientific evaluation for the International Burden of Illness Research 2019. Lancet Oncol. 23, 27–52 (2022).

    Article 

    Google Scholar
     

  • Chen, Y., Chen, H. & Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic functions of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25, 3144–3176 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iscaro, A., Howard, F. N. & Muthana, M. Nanoparticles: properties and functions in most cancers immunotherapy. Curr. Pharm. Des. 25, 1962–1979 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Biodegradable inorganic nanoparticles for most cancers theranostics: insights into the degradation conduct. Bioconjug. Chem. 31, 315–331 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Extended native in vivo supply of stimuli-responsive nanogels that quickly launch doxorubicin in triple-negative breast most cancers cells. Adv. Healthc. Mater. 9, 1901101 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Native triple-combination remedy ends in tumour regression and prevents recurrence in a colon most cancers mannequin. Nat. Mater. 15, 1128–1138 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwong, B., Gai, S. A., Elkhader, J., Wittrup, Ok. D. & Irvine, D. J. Localized immunotherapy through liposome-anchored anti-CD137 + IL-2 prevents deadly toxicity and elicits native and systemic antitumor immunity. Most cancers Res. 73, 1547–1558 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Hyaluronic acid ion-pairing nanoparticles for focused tumor remedy. J. Management. Launch 225, 170–182 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, C. et al. Native launch of extremely loaded antibodies from functionalized nanoporous help for most cancers immunotherapy. J. Am. Chem. Soc. 132, 6906–6907 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fransen, M. F., van der Sluis, T. C., Ossendorp, F., Arens, R. & Melief, C. J. M. Managed native supply of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and reduces danger of poisonous uncomfortable side effects. Clin. Most cancers Res. 19, 5381–5389 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishihara, J. et al. Matrix-binding checkpoint immunotherapies improve antitumor efficacy and cut back hostile occasions. Sci. Transl. Med. 9, eaan0401 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Errington, T. M., Denis, A., Perfito, N., Iorns, E. & Nosek, B. A. Challenges for assessing replicability in preclinical most cancers biology. eLife 10, e67995 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Y.-H., He, C., Riviere, J. E., Monteiro-Riviere, N. A. & Lin, Z. Meta-analysis of nanoparticle supply to tumors utilizing a physiologically based mostly pharmacokinetic modeling and simulation method. ACS Nano 14, 3075–3095 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, R. et al. Hydrogels for RNA supply. Nat. Mater. https://doi.org/10.1038/s41563-023-01472-w (2023).

  • Lasagna-Reeves, C. et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun. 393, 649–655 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatakeyama, H., Akita, H. & Harashima, H. A multifunctional envelope kind nano machine (MEND) for gene supply to tumours based mostly on the EPR impact: a method for overcoming the PEG dilemma. Adv. Drug Deliv. Rev. 63, 152–160 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, J. M., Martin, N. E. & Modi, M. Pegylation. Clin. Pharmacokinet. 40, 539–551 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a method for bettering nanoparticle-based drug and gene supply. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Influencing elements and techniques of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B 11, 2265–2285 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The exit of nanoparticles from stable tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Setyawati, M. I. et al. Titanium dioxide nanomaterials trigger endothelial cell leakiness by disrupting the homophilic interplay of VE–cadherin. Nat. Commun. 4, 1673 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamay, Y. et al. Quantitative self-assembly prediction yields focused nanomedicines. Nat. Mater. 17, 361–368 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bannigan, P. et al. Machine studying fashions to speed up the design of polymeric long-acting injectables. Nat. Commun. 14, 35 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundberg, S. M. et al. From native explanations to international understanding with explainable AI for bushes. Nat. Mach. Intell. 2, 56–67 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caballero, D. et al. Precision biomaterials in most cancers theranostics and modelling. Biomaterials 280, 121299 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. A comparability between sphere and rod nanoparticles concerning their in vivo organic conduct and pharmacokinetics. Sci. Rep. 7, 4131 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolhar, P. et al. Utilizing form results to focus on antibody-coated nanoparticles to lung and mind endothelium. Proc. Natl Acad. Sci. USA 110, 10753–10758 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M., Kim, H. S., Jin, T. & Moon, W. Ok. Close to-infrared photothermal remedy utilizing EGFR-targeted gold nanoparticles will increase autophagic cell dying in breast most cancers. J. Photochem. Photobiol. B 170, 58–64 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, Y. et al. Chemoresistance of most cancers cells: necessities of tumor microenvironment-mimicking in vitro fashions in anti-cancer drug growth. Theranostics 8, 5259–5275 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, B. et al. Molecular engineering of conjugated polymers for biocompatible natural nanoparticles with extremely environment friendly photoacoustic and photothermal efficiency in most cancers theranostics. ACS Nano 11, 10124–10134 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Small gold nanorods laden macrophages for enhanced tumor protection in photothermal remedy. Biomaterials 74, 144–154 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, P., Delost, M. D., Qureshi, M. H., Smith, D. T. & Njardarson, J. T. A survey of the buildings of US FDA permitted mixture medication. J. Med. Chem. 62, 4265–4311 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes Neto, J. M. et al. A number of low dose remedy as an efficient technique to deal with EGFR inhibitor-resistant NSCLC tumours. Nat. Commun. 11, 3157 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. H. et al. The impact of VEGF on the myogenic differentiation of adipose tissue derived stem cells inside thermosensitive hydrogel matrices. Biomaterials 31, 1213–1218 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Study. Res. 12, 2825–2830 (2011).


    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. in Proc. of the twenty second ACM SIGKDD Worldwide Convention on Data Discovery and Knowledge Mining 785–794 (Affiliation for Computing Equipment, 2016).

  • Lundberg, S. M. & Lee, S.-I. A unified method to deciphering mannequin predictions. in Advances in Neural Info Processing Methods (eds Guyon, I. et al.) Vol. 30 (Curran Associates, Inc., 2017).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments