Sunday, June 23, 2024
HomeNanotechnologyAtomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy

Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy


  • Chen, X. et al. Fashionable scattering‐sort scanning close to‐discipline optical microscopy for superior materials analysis. Adv. Mater. 31, 1804774 (2019).

    Article 

    Google Scholar
     

  • Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced gentle–matter interplay on the nanometre scale. Nature 418, 159–162 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathurin, J. et al. Photothermal AFM-IR spectroscopy and imaging: standing, challenges, and traits. J. Appl. Phys. 131, 010901 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Q. & Xu, X. G. What do totally different modes of AFM-IR imply for measuring gentle matter surfaces? Langmuir 39, 17593–17599 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. G. et al. One-dimensional floor phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, C. et al. Probing polaritons in 2D supplies. Adv. Choose. Mater. 8, 1901416 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tamagnone, M. et al. Extremely-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz, J. J., Jakob, D. S. & Centrone, A. A information to nanoscale IR spectroscopy: resonance enhanced transduction in touch and tapping mode AFM-IR. Chem. Soc. Rev. 51, 5248–5267 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Revealing phonon polaritons in hexagonal boron nitride by multipulse peak power infrared microscopy. Adv. Choose. Mater. 8, 1901084 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hamm, P., Lim, M. & Hochstrasser, R. M. Construction of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102, 6123–6138 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hamm, P., Lim, M., DeGrado, W. F. & Hochstrasser, R. M. The 2-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional construction. Proc. Natl Acad. Sci. USA 96, 2036–2041 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil, M., Demirdöven, N. & Tokmakoff, A. Coherent 2D IR spectroscopy: molecular construction and dynamics in resolution. J. Phys. Chem. A 107, 5258–5279 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Asplund, M. C., Zanni, M. T. & Hochstrasser, R. M. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc. Natl Acad. Sci. USA 97, 8219–8224 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, J., Kwak, Okay. & Fayer, M. D. Ultrafast 2D IR vibrational echo spectroscopy. Acc. Chem. Res. 40, 75–83 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Z. et al. Nanoimaging and nanospectroscopy of polaritons with time resolved s‐SNOM. Adv. Choose. Mater. 8, 1901042 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, M. et al. Ultrafast dynamics of floor plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoxall, E. et al. Direct commentary of ultraslow hyperbolic polariton propagation with unfavorable section velocity. Nat. Photon. 9, 674–678 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation. Sci. Adv. 9, eadi4407 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal decision. Nat. Photon. 8, 841–845 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, T., Kravtsov, V., Tokman, M., Belyanin, A. & Raschke, M. B. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol. 14, 838–843 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Wang, H. & Xu, X. G. Precept and functions of peak power infrared microscopy. Chem. Soc. Rev. 51, 5268–5286 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, S. H., Kratochvil, H. T., Zanni, M. T. & Boxer, S. G. Solvent-independent anharmonicity for carbonyl oscillators. J. Phys. Chem. B 121, 2331–2338 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Xie, Q., Zhang, Y. & Xu, X. G. Photothermally probing vibrational excited-state absorption with nanoscale spatial decision via frequency-domain pump–probe peak power infrared microscopy. J. Phys. Chem. C 125, 8333–8338 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Direct commentary of extremely confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der Waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, Okay. et al. Engineering phonon polaritons in van der Waals heterostructures to boost in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Finch, M. F., Xiong, D. & Lail, B. A. Hybrid long-range hyperbolic phonon polariton waveguide utilizing hexagonal boron nitride for mid-infrared subwavelength confinement. Choose. Specific 26, 26272–26282 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy on the sturdy coupling restrict. Mild Sci. Appl. 7, 17172 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).

    Article 
    CAS 

    Google Scholar
     

  • Srivastava, G. P. The anharmonic phonon decay fee in group-III nitrides. J. Phys. Condens. Matter 21, 174205 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuscó, R. et al. Isotopic results on phonon anharmonicity in layered van der Waals crystals: isotopically pure hexagonal boron nitride. Phys. Rev. B 97, 155435 (2018).

    Article 

    Google Scholar
     

  • Ni, G. et al. Lengthy-lived phonon polaritons in hyperbolic supplies. Nano Lett. 21, 5767–5773 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, I.-H. et al. Picture polaritons in boron nitride for excessive polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Janzen, E., Wang, L., Edgar, J. H. & Xu, X. G. Probing mid-infrared phonon polaritons within the aqueous section. Nano Lett. 20, 3986–3991 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Single crystal development of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Q. & Xu, X. G. Fourier-transform atomic power microscope-based photothermal infrared spectroscopy with broadband supply. Nano Lett. 22, 9174–9180 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamm, P. & Zanni, M. Ideas and Strategies of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).

  • Ruggeri, F. S., Mannini, B., Schmid, R., Vendruscolo, M. & Knowles, T. P. J. Single molecule secondary construction willpower of proteins via infrared absorption nanospectroscopy. Nat. Commun. 11, 2945 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Middleton, C. T., Woys, A. M., Mukherjee, S. S. & Zanni, M. T. Residue-specific structural kinetics of proteins via the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy. Strategies 52, 12–22 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, S.-H., Strasfeld, D. B., Ling, Y. L. & Zanni, M. T. Automated 2D IR spectroscopy utilizing a mid-IR pulse shaper and software of this know-how to the human islet amyloid polypeptide. Proc. Natl Acad. Sci. USA 104, 14197–14202 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolado, I. et al. Distant near-field spectroscopy of vibrational sturdy coupling between natural molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

  • Ni, G. X. et al. Basic limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dery, S. & Gross, E. IR nanospectroscopy in catalysis analysis. In Ambient Stress Spectroscopy in Complicated Chemical Environments 1396, 147–173 (ACS, 2021).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments