Sunday, June 23, 2024
HomeNanotechnologyJanus liposozyme for the modulation of redox and immune homeostasis in contaminated...

Janus liposozyme for the modulation of redox and immune homeostasis in contaminated diabetic wounds


  • Rice, J. B. et al. Burden of diabetic foot ulcers for medicare and personal insurers. Diabetes Care 37, 651–658 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Theocharidis, G. et al. Single cell transcriptomic panorama of diabetic foot ulcers. Nat. Commun. 13, 181 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDermott, Okay., Fang, M., Boulton, A. J. M., Selvin, E. & Hicks, C. W. Etiology, epidemiology, and disparities within the burden of diabetic foot ulcers. Diabetes Care 46, 209–221 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. International epidemiology of diabetic foot ulceration: a scientific evaluate and meta-analysis (dagger). Ann. Med. 49, 106–116 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Falanga, V. et al. Power wounds. Nat. Rev. Dis. Prim. 8, 50 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Falanga, V. Wound therapeutic and its impairment within the diabetic foot. Lancet 366, 1736–1743 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Naghibi, M. et al. The impact of diabetes mellitus on chemotactic and bactericidal exercise of human polymorphonuclear leukocytes. Diabetes Res. Clin. Pract. 4, 27–35 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zykova, S. N. et al. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic kind II-like db/db mice. Diabetes 49, 1451–1458 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thurlow, L. R., Stephens, A. C., Hurley, Okay. E. & Richardson, A. R. Lack of dietary immunity in diabetic pores and skin infections promotes Staphylococcus aureus virulence. Sci. Adv. 6, eabc5569 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavery, L. A. et al. Threat elements for foot infections in people with diabetes. Diabetes Care 29, 1288–1293 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong, D. G. et al. 5 12 months mortality and direct prices of look after individuals with diabetic foot problems are akin to most cancers. J. Foot Ankle Res. 13, 16 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geiss, L. S. et al. Resurgence of diabetes-related nontraumatic lower-extremity amputation within the younger and middle-aged grownup U.S. inhabitants. Diabetes Care 42, 50–54 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G. & Apelqvist, J. The worldwide burden of diabetic foot illness. Lancet 366, 1719–1724 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Jeffcoate, W. J., Vileikyte, L., Boyko, E. J., Armstrong, D. G. & Boulton, A. J. M. Present challenges and alternatives within the prevention and administration of diabetic foot ulcers. Diabetes Care 41, 645–652 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bowling, F. L., Rashid, S. T. & Boulton, A. J. Stopping and treating foot problems related to diabetes mellitus. Nat. Rev. Endocrinol. 11, 606–616 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F. & Nogueira-Machado, J. A. Mobile dying, reactive oxygen species (ROS) and diabetic problems. Cell. Demise. Dis. 9, 119 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eming, S. A., Martin, P. & Tomic-Canic, M. Wound restore and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266 (2014).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Scarless wound therapeutic programmed by core–shell microneedles. Nat. Commun. 14, 3431 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn, T. A. & Vannella, Okay. M. Macrophages in tissue restore, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willenborg, S. et al. Mitochondrial metabolism coordinates stage-specific restore processes in macrophages throughout wound therapeutic. Cell. Metab. 33, 2398–2414 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veves, A., Falanga, V., Armstrong, D. G., Sabolinski, M. L. & Apligraf Diabetic Foot Ulcer Research. Graftskin, a human pores and skin equal, is efficient within the administration of noninfected neuropathic diabetic foot ulcers: a potential randomized multicenter scientific trial. Diabetes Care 24, 290–295 (2001).

  • Marston, W. A., Hanft, J., Norwood, P., Pollak, R. & Dermagraft Diabetic Foot Ulcer Research Group. The efficacy and security of Dermagraft in bettering the therapeutic of power diabetic foot ulcers: outcomes of a potential randomized trial. Diabetes Care 26, 1701–1705 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Theocharidis, G. et al. A strain-programmed patch for the therapeutic of diabetic wounds. Nat. Biomed. Eng. 6, 1118–1133 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruciani, M., Lipsky, B. A., Mengoli, C. & de Lalla, F. Are granulocyte colony-stimulating elements helpful in treating diabetic foot infections?: A meta-analysis. Diabetes Care 28, 454–460 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziyadeh, N., Fife, D., Walker, A. M., Wilkinson, G. S. & Seeger, J. D. A matched cohort examine of the danger of most cancers in customers of becaplermin. Adv. Pores and skin. Wound Care. 24, 31–39 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Potent laminin-inspired antioxidant regenerative dressing accelerates wound therapeutic in diabetes. Proc. Natl Acad. Sci. USA 115, 6816–6821 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J., Yang, M., Xu, F., Chen, J. & Ma, S. Acceleration of wound therapeutic exercise with syringic acid in streptozotocin induced diabetic rats. Life Sci. 233, 116728 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Symbiotic algae–micro organism dressing for producing hydrogen to speed up diabetic wound therapeutic. Nano Lett. 22, 229–237 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. D. et al. Inexperienced tea spinoff pushed good hydrogels with desired features for power diabetic wound remedy. Adv. Funct. Mater. 31, 2009442 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lipsky, B. A. et al. Analysis and remedy of diabetic foot infections. Clin. Infect. Dis. 39, 885–910 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kalelkar, P. P., Riddick, M. & Garcia, A. J. Biomaterial-based supply of antimicrobial therapies for the remedy of bacterial infections. Nat. Rev. Mater. 7, 39–54 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sport, F. Administration of osteomyelitis of the foot in diabetes mellitus. Nat. Rev. Endocrinol. 6, 43–47 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Xiu, W. et al. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic remedy to fight bacterial biofilm infections. Nat. Commun. 13, 3875 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Pharmaceutical intermediate-modified gold nanoparticles: towards multidrug-resistant micro organism and wound-healing software by way of an electrospun scaffold. ACS Nano 11, 5737–5745 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, S. et al. Membrane intercalation-enhanced photodynamic inactivation of micro organism by a metallacycle and TAT-decorated virus coat protein. Proc. Natl Acad. Sci. USA 116, 23437–23443 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotruck, J. T. et al. Selenium: biochemical function as a part of glutathione peroxidase. Science 179, 588–590 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia Soriano, F. et al. Diabetic endothelial dysfunction: the function of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108–113 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Notch–RBP-J signaling regulates the transcription issue IRF8 to advertise inflammatory macrophage polarization. Nat. Immunol. 13, 642–650 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosser, D. M. & Edwards, J. P. Exploring the complete spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Pores and skin γδ T cells and their perform in wound therapeutic. Entrance. Immunol. 13, 875076 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath, W. R. & Carbone, F. R. The skin-resident and migratory immune system in regular state and reminiscence: innate lymphocytes, dendritic cells and T cells. Nat. Immunol. 14, 978–985 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seraphim, P. M. et al. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound therapeutic. Life Sci. 254, 117813 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleinert, M. et al. Animal fashions of weight problems and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maschalidi, S. et al. Concentrating on SLC7A11 improves efferocytosis by dendritic cells and wound therapeutic in diabetes. Nature 606, 776–784 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complicated single-cell trajectories. Nat. Strategies 14, 979–982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Reversing SKI–SMAD4-mediated suppression is crucial for TH17 cell differentiation. Nature 551, 105–109 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, Z. et al. Characterization of TGF-beta signaling in a human organotypic pores and skin mannequin reveals that lack of TGF-betaRII induces invasive tissue development. Sci. Sign. 15, eabo2206 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in well being, fibrosis, and most cancers. Immunity 54, 903–915 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schatteman, G. C., Hanlon, H. D., Jiao, C., Dodds, S. G. & Christy, B. A. Blood-derived angioblasts speed up blood-flow restoration in diabetic mice. J. Clin. Make investments. 106, 571–578 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furman, B. L. Streptozotocin-induced diabetic fashions in mice and rats. Curr. Protoc. Pharmacol. 70, 5.47.1–5.47.20 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments