Thursday, June 13, 2024
HomeNanotechnologyMind-targeted drug supply - nanovesicles directed to particular mind cells by brain-targeting...

Mind-targeted drug supply – nanovesicles directed to particular mind cells by brain-targeting ligands | Journal of Nanobiotechnology


  • Hartl N, Adams F, Merkel OM. From adsorption to covalent bonding: apolipoprotein E functionalization of polymeric nanoparticles for drug supply throughout the blood-brain barrier. Adv Ther (Weinh). 2021;4(1).

  • Raz L, Knoefel J, Bhaskar Okay. The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Move Metab. 2016;36(1):172–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Racette BA, Willis AW. Time to alter the blind males and the elephant method to Parkinson illness? Neurology. 2015;85(2):190–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frahm-Falkenberg S, Ibsen R, Kjellberg J, Jennum P. Well being, social and financial penalties of dementias: a comparative nationwide cohort research. Eur J Neurol. 2016;23(9):1400–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X. Present methods for Mind Drug Supply. Theranostics. 2018;8(6):1481–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendonca LS, Onofre I, Miranda CO, Perfeito R, Nobrega C, de Almeida LP. Stem cell-based therapies for Polyglutamine ailments. Adv Exp Med Biol. 2018;1049:439–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alam MI, Beg S, Samad A, Baboota S, Kohli Okay, Ali J, et al. Technique for efficient mind drug supply. Eur J Pharm Sci. 2010;40(5):385–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomed (Lond). 2016;11(6):673–92.

    Article 
    CAS 

    Google Scholar
     

  • Murthy SK. Nanoparticles in fashionable medication: cutting-edge and future challenges. Int J Nanomed. 2007;2(2):129–41.

    CAS 

    Google Scholar
     

  • Farokhzad OC, Langer R. Affect of nanotechnology on drug supply. ACS Nano. 2009;3(1):16–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: ideas, properties, and Regulatory points. Entrance Chem. 2018;6:360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boado RJ, Pardridge WM. The computer virus Liposome Expertise for Nonviral Gene switch throughout the blood-brain barrier. J Drug Deliv. 2011;2011:296151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendonça LS, De Pedroso MC, Simöes S. Focused lipid-based methods for siRNA supply. J Drug Deliv Sci Technol. 2012;22(1):65–73.

    Article 

    Google Scholar
     

  • Su S, Kang PM. Systemic assessment of biodegradable nanomaterials in Nanomedicine. Nanomaterials (Basel). 2020;10(4).

  • Jo DH, Kim JH, Lee TG, Kim JH. Measurement, floor cost, and form decide therapeutic results of nanoparticles on mind and retinal ailments. Nanomedicine. 2015;11(7):1603–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang JH, Jang WY, Ko YT. The Impact of Floor expenses on the Mobile Uptake of liposomes investigated by reside cell imaging. Pharm Res. 2017;34(4):704–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug supply system to reinforce bioavailability of poorly water-soluble medicine. J Drug Deliv. 2013;2013:340315.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a method for bettering nanoparticle-based drug and gene supply. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan AR, Yang X, Fu M, Zhai G. Latest progress of drug nanoformulations focusing on to mind. J Management Launch. 2018;291:37–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang F, Lin YA, Kannan S, Kannan RM. Concentrating on particular cells within the mind with nanomedicines for CNS therapies. J Management Launch. 2016;240:212–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An summary of lively and passive focusing on methods to enhance the nanocarriers effectivity to tumour websites. J Pharm Pharmacol. 2019;71(8):1185–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo J, Park C, Yi G, Lee D, Koo H. Energetic focusing on methods utilizing Organic ligands for Nanoparticle Drug Supply methods. Cancers (Basel). 2019;11(5).

  • Zhao Z, Ukidve A, Kim J, Mitragotri S. Concentrating on methods for tissue-specific drug supply. Cell. 2020;181(1):151–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juan A, Cimas FJ, Bravo I, Pandiella A, Ocana A, Alonso-Moreno C. Antibody conjugation of nanoparticles as therapeutics for breast Most cancers Therapy. Int J Mol Sci. 2020;21(17).

  • Pietersz GA, Wang X, Yap ML, Lim B, Peter Okay. Therapeutic focusing on in nanomedicine: the long run lies in recombinant antibodies. Nanomed (Lond). 2017;12(15):1873–89.

    Article 
    CAS 

    Google Scholar
     

  • Juan A, Cimas FJ, Bravo I, Pandiella A, Ocana A, Alonso-Moreno C. An summary of antibody conjugated polymeric nanoparticles for breast Most cancers remedy. Pharmaceutics. 2020;12(9).

  • Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, et al. Focused most cancers remedy via antibody fragments-decorated nanomedicines. J Management Launch. 2017;268:323–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for Most cancers Remedy: Success and limitations. Curr Med Chem. 2019;26(3):396–426.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eloy JO, Petrilli R, Trevizan LNF, Chorilli M, Immunoliposomes. A assessment on functionalization methods and targets for drug supply. Colloids Surf B Biointerfaces. 2017;159:454–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark AJ, Davis ME. Elevated mind uptake of focused nanoparticles by including an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A. 2015;112(40):12486–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of lively focusing on in stable tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the focused supply of therapeutic brokers in opposition to most cancers. Biochim Biophys Acta. 2012;1820(3):291–317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Li M, Lim WQ, Luo Z, Phua SZF, Huo R, et al. A transferrin-conjugated Hole Nanoplatform for Redox-controlled and focused chemotherapy of Tumor with decreased inflammatory reactions. Theranostics. 2018;8(2):518–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. Transferrin and octaarginine modified dual-functional liposomes with improved most cancers cell focusing on and enhanced intracellular supply for the therapy of ovarian most cancers. Drug Deliv. 2018;25(1):517–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi L, Na MH, Jung HK, Vadevoo SM, Kim CW, Padmanaban G, et al. Enhanced supply of liposomes to lung tumor via focusing on interleukin-4 receptor on each tumor cells and tumor endothelial cells. J Management Launch. 2015;209:327–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Z, Lengthy Y, Cun X, Wang X, Li J, Mei L, et al. A size-shrinkable nanoparticle-based mixed anti-tumor and anti inflammatory technique for enhanced most cancers remedy. Nanoscale. 2018;10(21):9957–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, Fang X, Yang Y, Wang C. Peptide-enabled focused Supply methods for therapeutic purposes. Entrance Bioeng Biotechnol. 2021;9:701504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective supply of nanoparticles encapsulated medicine. Int J Nanomed. 2014;9:1537–57.


    Google Scholar
     

  • Guan B, Zhang X. Aptamers as versatile ligands for Biomedical and Pharmaceutical Functions. Int J Nanomed. 2020;15:1059–71.

    Article 
    CAS 

    Google Scholar
     

  • Stein CA, Castanotto D. FDA-Accepted Oligonucleotide therapies in 2017. Mol Ther. 2017;25(5):1069–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parashar A. Aptamers in therapeutics. J Clin Diagn Res. 2016;10(6):BE01–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eilers A, Witt S, Walter J. Aptamer-modified nanoparticles in Medical Functions. Adv Biochem Eng Biotechnol. 2020;174:161–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Catuogno S, Esposito CL, de Franciscis V. Aptamer-mediated focused supply of therapeutics: an replace. Prescription drugs (Basel). 2016;9(4).

  • Ledermann JA, Canevari S, Thigpen T. Concentrating on the folate receptor: diagnostic and therapeutic approaches to personalize most cancers therapies. Ann Oncol. 2015;26(10):2034–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Y, Cao Y, Li P, Liu J, Chen H, Hu W et al. Ultrasound-Triggered Destruction of Folate-Functionalized Mesoporous silica nanoparticle-loaded Microbubble for focused Tumor Remedy. Adv Healthc Mater. 2017;6(18).

  • Srinivasarao M, Low PS. Ligand-targeted drug supply. Chem Rev. 2017;117(19):12133–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Li Y, Ao H, Bi D, Han M, Guo Y, et al. Folate-targeting annonaceous acetogenins nanosuspensions: considerably enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Deliv. 2018;25(1):880–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Construction and performance of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butt AM, Jones HC, Abbott NJ. Electrical resistance throughout the blood-brain barrier in anaesthetized rats: a developmental research. J Physiol. 1990;429:47–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butt AM, Jones HC. Impact of histamine and antagonists on electrical resistance throughout the blood-brain barrier in rat brain-surface microvessels. Mind Res. 1992;569(1):100–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urayama A. [The blood-brain barrier and neurodegenerative lysosomal storage diseases]. Mind Nerve. 2013;65(2):153–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Warren KE. Past the blood:Mind Barrier: the significance of Central Nervous System (CNS) pharmacokinetics for the Therapy of CNS Tumors, together with diffuse intrinsic pontine glioma. Entrance Oncol. 2018;8:239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for efficient glioblastoma therapy. Drug Resist Updat. 2015;19:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Perez-Martinez FC, Guerra J, Posadas I, Cena V. Boundaries to non-viral vector-mediated gene supply within the nervous system. Pharm Res. 2011;28(8):1843–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson JA, Baer SC. Phagocytosis by zippers and triggers. Developments Cell Biol. 1995;5(3):89–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suk JS, Suh J, Choy Okay, Lai SK, Fu J, Hanes J. Gene supply to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 2006;27(29):5143–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misra A, Ganesh S, Shahiwala A, Shah SP. Drug supply to the central nervous system: a assessment. J Pharm Pharm Sci. 2003;6(2):252–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Shalgunov V, Xiong M, L’Estrade ET, Raval NR, Andersen IV, Edgar FG, et al. Blocking of efflux transporters in rats improves translational validation of mind radioligands. EJNMMI Res. 2020;10(1):124.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV. Mechanism of pluronic impact on P-glycoprotein efflux system in blood-brain barrier: contributions of vitality depletion and membrane fluidization. J Pharmacol Exp Ther. 2001;299(2):483–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Entrance Neuroeng. 2013;6:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to mind disposition of small compounds and macromolecules. Mol Pharm. 2013;10(5):1473–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue W, Shen J. Native supply methods for peptides and proteins into the CNS: Standing Quo, challenges, and future views. Prescription drugs (Basel). 2023;16(6).

  • Yi X, Manickam DS, Brynskikh A, Kabanov AV. Agile supply of protein therapeutics to CNS. J Management Launch. 2014;190:637–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwong YL, Yeung DY, Chan JC. Intrathecal chemotherapy for hematologic malignancies: medicine and toxicities. Ann Hematol. 2009;88(3):193–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glascock JJ, Osman EY, Coady TH, Rose FF, Shababi M, Lorson CL. Supply of therapeutic brokers via intracerebroventricular (ICV) and intravenous (IV) injection in mice. J Vis Exp. 2011(56).

  • Shofty B, Neuberger A, Naffaa ME, Binawi T, Babitch T, Rappaport ZH, et al. Intrathecal or intraventricular remedy for post-neurosurgical gram-negative meningitis: matched cohort research. Clin Microbiol Infect. 2016;22(1):66–70.

    Article 
    PubMed 

    Google Scholar
     

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF stream via the mind parenchyma and the clearance of interstitial solutes, together with amyloid beta. Sci Transl Med. 2012;4(147):147ra11.

    Article 

    Google Scholar
     

  • Noguchi Y, Kato M, Ozeki Okay, Ishigai M. Pharmacokinetics of an intracerebroventricularly administered antibody in rats. MAbs. 2017;9(7):1210–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz A, Ajayi T, Specchio N, de Los Reyes E, Gissen P, Ballon D, et al. Research of Intraventricular Cerliponase Alfa for CLN2 illness. N Engl J Med. 2018;378(20):1898–907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, Friedman AH, et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant mind tumors. Neuro Oncol. 2008;10(3):320–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, et al. Intrathecal antibody distribution within the rat mind: floor diffusion, perivascular transport and osmotic enhancement of supply. J Physiol. 2018;596(3):445–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • C ID, Sevin C, Krageloh-Mann I, Giugliani R, Sakai N, Wu J, et al. Security of intrathecal supply of recombinant human arylsulfatase A in youngsters with metachromatic leukodystrophy: outcomes from a section 1/2 scientific trial. Mol Genet Metab. 2020;131(1–2):235–44.


    Google Scholar
     

  • Dorovini-Zis Okay, Bowman PD, Betz AL, Goldstein GW. Hyperosmotic arabinose options open the tight junctions between mind capillary endothelial cells in tissue tradition. Mind Res. 1984;302(2):383–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito M, Bolati Okay, Kinjo T, Ichimura Okay, Furuta A, McLoughlin DM, et al. Electroconvulsive stimulation transiently enhances the permeability of the rat blood-brain barrier and induces astrocytic modifications. Mind Res Bull. 2017;128:92–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Gong P, Zhang J, Mao X, Zhao Y, Wang H, et al. Particular frequency electroacupuncture stimulation transiently enhances the permeability of the blood-brain barrier and induces tight Junction Adjustments. Entrance Neurosci. 2020;14:582324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo H, Shusta EV. Blood-brain barrier modulation to enhance Glioma Drug Supply. Pharmaceutics. 2020;12(11).

  • Jahnke Okay, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, et al. Intraarterial chemotherapy and osmotic blood-brain barrier disruption for sufferers with embryonal and germ cell tumors of the central nervous system. Most cancers. 2008;112(3):581–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an summary: construction, regulation, and scientific implications. Neurobiol Dis. 2004;16(1):1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lalani J, Raichandani Y, Mathur R, Lalan M, Chutani Okay, Mishra AK, et al. Comparative receptor based mostly mind supply of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol. 2012;8(6):918–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendonca LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simoes S. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for persistent myeloid leukemia therapy. Bioconjug Chem. 2010;21(1):157–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fornaguera C, Dols-Perez A, Caldero G, Garcia-Celma MJ, Camarasa J, Solans C. PLGA nanoparticles ready by nano-emulsion templating utilizing low-energy strategies as environment friendly nanocarriers for drug supply throughout the blood-brain barrier. J Management Launch. 2015;211:134–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulbrich Okay, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles allow drug supply throughout the blood-brain barrier (BBB). Eur J Pharm Biopharm. 2009;71(2):251–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abo-Krysha N, Rashed L. The position of iron dysregulation within the pathogenesis of a number of sclerosis: an Egyptian research. Mult Scler. 2008;14(5):602–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek Okay, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound medicine throughout the blood-brain barrier. J Drug Goal. 2002;10(4):317–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. Albumin nanoparticles focused with apo E enter the CNS by transcytosis and are delivered to neurones. J Management Launch. 2009;137(1):78–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, et al. Involvement of the low-density lipoprotein receptor-related protein within the transcytosis of the mind supply vector angiopep-2. J Neurochem. 2008;106(4):1534–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a brand new drug supply system for the mind. J Pharmacol Exp Ther. 2008;324(3):1064–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas FC, Taskar Okay, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, et al. Uptake of ANG1005, a novel paclitaxel spinoff, via the blood-brain barrier into mind and experimental mind metastases of breast most cancers. Pharm Res. 2009;26(11):2486–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulbrich Okay, Knobloch T, Kreuter J. Concentrating on the insulin receptor: nanoparticles for drug supply throughout the blood-brain barrier (BBB). J Drug Goal. 2011;19(2):125–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Guo Y, Kuang Y, An S, Ma H, Jiang C. Choline transporter-targeting and co-delivery system for glioma remedy. Biomaterials. 2013;34(36):9142–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Zhou L, Ye D, Huang S, Shao Okay, Huang R, et al. Choline-derivate-modified nanoparticles for brain-targeting gene supply. Adv Mater. 2011;23(39):4516–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo YC, Chung CY. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine throughout human brain-microvascular endothelial cells. Colloids Surf B Biointerfaces. 2012;91:242–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Zheng X, Wan X, Shao X, Liu Q, Zhang Z, et al. The potential use of H102 peptide-loaded dual-functional nanoparticles within the therapy of Alzheimer’s illness. J Management Launch. 2014;192:317–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcos-Contreras OA, Greineder CF, Kiseleva RY, Parhiz H, Walsh LR, Zuluaga-Ramirez V, et al. Selective focusing on of nanomedicine to infected cerebral vasculature to reinforce the blood-brain barrier. Proc Natl Acad Sci U S A. 2020;117(7):3405–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faure MP, Alonso A, Nouel D, Gaudriault G, Dennis M, Vincent JP, et al. Somatodendritic internalization and perinuclear focusing on of neurotensin within the mammalian mind. J Neurosci. 1995;15(6):4140–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh TY, Huang WC, Kang YD, Chu CY, Liao WL, Chen YY, et al. Neurotensin-conjugated decreased Graphene Oxide with Multi-stage Close to-Infrared-triggered synergic focused neuron gene transfection in Vitro and in vivo for neurodegenerative Illness Remedy. Adv Healthc Mater. 2016;5(23):3016–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH. Neuron-specific supply of nucleic acids mediated by Tet1-modified poly(ethylenimine). J Gene Med. 2007;9(8):691–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang YZ, Hernandez FJ, Gu B, Stockdale KR, Nanapaneni Okay, Scheetz TE, et al. RNA aptamer-based purposeful ligands of the neurotrophin receptor, TrkB. Mol Pharmacol. 2012;82(4):623–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Chau Y. Polymeric nanoparticles embellished with BDNF-derived peptide for neuron-targeted supply of PTEN inhibitor. Eur J Pharm Sci. 2018;124:37–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes CD, Oliveira H, Estevao I, Pires LR, Pego AP. In vivo focused gene supply to peripheral neurons mediated by neurotropic poly(ethylene imine)-based nanoparticles. Int J Nanomed. 2016;11:2675–83.

    CAS 

    Google Scholar
     

  • Lopes CD, Gomes CP, Neto E, Sampaio P, Aguiar P, Pego AP. Microfluidic-based platform to imitate the in vivo peripheral administration of neurotropic nanoparticles. Nanomed (Lond). 2016;11(24):3205–21.

    Article 
    CAS 

    Google Scholar
     

  • Lopes CDF, Goncalves NP, Gomes CP, Saraiva MJ, Pego AP. BDNF gene supply mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve damage. Biomaterials. 2017;121:83–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Twin-modified liposome for focused and enhanced gene supply into mice Mind. J Pharmacol Exp Ther. 2020;374(3):354–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Improvement and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene supply properties. Int J Nanomed. 2019;14:6497–517.

    Article 

    Google Scholar
     

  • Vilella A, Tosi G, Grabrucker AM, Ruozi B, Belletti D, Vandelli MA, et al. Perception on the destiny of CNS-targeted nanoparticles. Half I: Rab5-dependent cell-specific uptake and distribution. J Management Launch. 2014;174:195–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tosi G, Fano RA, Bondioli L, Badiali L, Benassi R, Rivasi F, et al. Investigation on mechanisms of glycopeptide nanoparticles for drug supply throughout the blood-brain barrier. Nanomed (Lond). 2011;6(3):423–36.

    Article 
    CAS 

    Google Scholar
     

  • Conceicao M, Mendonca L, Nobrega C, Gomes C, Costa P, Hirai H, et al. Intravenous administration of brain-targeted steady nucleic acid lipid particles alleviates Machado-Joseph illness neurological phenotype. Biomaterials. 2016;82:124–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Zhan C, Gu B, Meng Q, Wang H, Lu W, et al. Focused mind supply of itraconazole through RVG29 anchored nanoparticles. J Drug Goal. 2011;19(3):228–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lozic I, Hartz RV, Bartlett CA, Shaw JA, Archer M, Naidu PS, et al. Enabling twin mobile locations of polymeric nanoparticles for therapy following partial damage to the central nervous system. Biomaterials. 2016;74:200–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chekhonin VP, Zhirkov YA, Gurina OI, Ryabukhin IA, Lebedev SV, Kashparov IA, et al. PEGylated immunoliposomes directed in opposition to mind astrocytes. Drug Deliv. 2005;12(1):1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu J, Al-Bayati Okay, Ho EA. Improvement of antibody-modified chitosan nanoparticles for the focused supply of siRNA throughout the blood-brain barrier as a method for inhibiting HIV replication in astrocytes. Drug Deliv Transl Res. 2017;7(4):497–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi B, Soh M, Manandhar Y, Kim D, Han SI, Baik S, et al. Extremely selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic therapy of neuropathic ache. Nanoscale. 2019;11(41):19437–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rittchen S, Boyd A, Burns A, Park J, Fahmy TM, Metcalfe S, et al. Myelin restore in vivo is elevated by focusing on oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory issue (LIF). Biomaterials. 2015;56:78–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fereidan-Esfahani M, Yue WY, Wilbanks B, Johnson AJ, Warrington AE, Howe CL et al. Remyelination-promoting DNA aptamer conjugate Myaptavin-3064 binds to grownup oligodendrocytes in Vitro. Prescription drugs (Basel). 2020;13(11).

  • Hosseini Shamili F, Alibolandi M, Rafatpanah H, Abnous Okay, Mahmoudi M, Kalantari M, et al. Immunomodulatory properties of MSC-derived exosomes armed with excessive affinity aptamer towards mylein as a platform for lowering a number of sclerosis scientific rating. J Management Launch. 2019;299:149–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt A, Bockmann M, Stoll A, Racek T, Putzer BM. Evaluation of adenovirus gene switch into grownup neural stem cells. Virus Res. 2005;114(1–2):45–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt A, Haas SJ, Hildebrandt S, Scheibe J, Eckhoff B, Racek T, et al. Selective focusing on of adenoviral vectors to neural precursor cells within the hippocampus of grownup mice: new prospects for in situ gene remedy. Stem Cells. 2007;25(11):2910–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carradori D, Saulnier P, Preat V, des Rieux A, Eyer J. NFL-lipid nanocapsules for mind neural stem cell focusing on in vitro and in vivo. J Management Launch. 2016;238:253–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carradori D, Dos Santos AG, Masquelier J, Paquot A, Saulnier P, Eyer J, et al. The origin of neural stem cells impacts their interactions with targeted-lipid nanocapsules: potential position of plasma membrane lipid composition and fluidity. J Management Launch. 2018;292:248–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Praca C, Rai A, Santos T, Cristovao AC, Pinho SL, Cecchelli R, et al. A nanoformulation for the preferential accumulation in grownup neurogenic niches. J Management Launch. 2018;284:57–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendonca LS, Moreira JN, de Lima MC, Simoes S. Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for persistent myeloid leukemia therapy. Biotechnol Bioeng. 2010;107(5):884–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inazu M. Useful expression of Choline transporters within the blood-brain barrier. Vitamins. 2019;11(10).

  • Raab G, Klagsbrun M. Heparin-binding EGF-like development issue. Biochim Biophys Acta. 1997;1333(3):F179–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Gaillard PJ, de Boer AG. A novel alternative for focused drug supply to the mind. J Management Launch. 2006;116(2):e60–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien P, Wong RW. Optic neuritis following diphtheria, tetanus, pertussis, and inactivated poliovirus mixed vaccination: a case report. J Med Case Rep. 2018;12(1):356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tosi G, Vilella A, Veratti P, Belletti D, Pederzoli F, Ruozi B, et al. Exploiting bacterial pathways for BBB crossing with PLGA nanoparticles modified with a mutated type of Diphtheria Toxin (CRM197): in vivo experiments. Mol Pharm. 2015;12(10):3672–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh J, Habean ML, Panicker N. Inflammasome meeting in neurodegenerative ailments. Developments Neurosci. 2023;46(10):814–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s illness: present proof and future instructions. Alzheimers Dement. 2016;12(6):719–32.

    Article 
    PubMed 

    Google Scholar
     

  • Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the position and penalties. Neurosci Res. 2014;79:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Candelario-Jalil E, Dijkhuizen RM, Magnus T, Neuroinflammation. Stroke, blood-brain barrier dysfunction, and Imaging modalities. Stroke. 2022;53(5):1473–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang C, Hawkins KE, Dore S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier harm in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu J, Rappaport J, Muro S. Particular binding, uptake, and transport of ICAM-1-targeted nanocarriers throughout endothelial and subendothelial cell parts of the blood-brain barrier. Pharm Res. 2014;31(7):1855–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ailuno G, Zuccari G, Baldassari S, Lai F, Caviglioli G. Anti-vascular cell adhesion Molecule-1 nanosystems: a Promising Technique in opposition to Inflammatory Based mostly ailments. J Nanosci Nanotechnol. 2021;21(5):2793–807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15(7):455–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huse JT, Holland EC. Concentrating on mind most cancers: advances within the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Most cancers. 2010;10(5):319–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munir MU. Nanomedicine Penetration to Tumor: challenges, and Superior methods to Sort out this problem. Cancers (Basel). 2022;14(12).

  • Zhao M, van Straten D, Broekman MLD, Preat V, Schiffelers RM. Nanocarrier-based drug mixture remedy for glioblastoma. Theranostics. 2020;10(3):1355–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Rising blood-brain-barrier-crossing nanotechnology for mind most cancers theranostics. Chem Soc Rev. 2019;48(11):2967–3014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee C, Hwang HS, Lee S, Kim B, Kim JO, Oh KT et al. Rabies virus-inspired silica-coated gold nanorods as a Photothermal Therapeutic platform for treating mind tumors. Adv Mater. 2017;29(13).

  • Mojarad-Jabali S, Farshbaf M, Hemmati S, Sarfraz M, Motasadizadeh H, Shahbazi Mojarrad J, et al. Comparability of three artificial transferrin mimetic small peptides to advertise the blood-brain barrier penetration of vincristine liposomes for improved glioma focused remedy. Int J Pharm. 2022;613:121395.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Zhao Z, Gao H, Rostami I, You Q, Jia X, et al. Enhanced blood-brain-barrier penetrability and tumor-targeting effectivity by peptide-functionalized poly(amidoamine) dendrimer for the remedy of gliomas. Nanotheranostics. 2019;3(4):311–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al. Transferrin receptors-targeting nanocarriers for environment friendly focused supply and transcytosis of medicine into the mind tumors: a assessment of latest developments and rising traits. Drug Deliv Transl Res. 2018;8(5):1545–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, Xu Q, Chow PK, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for mind glioma therapy. Biomaterials. 2013;34(33):8511–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and security of paclitaxel-loading angiopep-conjugated twin focusing on PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Jiang Y, Meng F, Deng C, Cheng R, Zhang J, et al. Extremely efficacious and particular anti-glioma chemotherapy by tandem nanomicelles co-functionalized with mind tumor-targeting and cell-penetrating peptides. J Management Launch. 2018;278:1–8.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, et al. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin supply to human glioma xenografts in vivo. J Management Launch. 2016;233:29–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong Y, Wang C, Cheng R, Cheng L, Meng F, Liu Z, et al. cRGD-directed, NIR-responsive and sturdy AuNR/PEG-PCL hybrid nanoparticles for focused chemotherapy of glioblastoma in vivo. J Management Launch. 2014;195:63–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miura Y, Takenaka T, Toh Okay, Wu S, Nishihara H, Kano MR, et al. Cyclic RGD-linked polymeric micelles for focused supply of platinum anticancer medicine to glioblastoma via the blood-brain tumor barrier. ACS Nano. 2013;7(10):8583–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talelli M, Barz M, Rijcken CJ, Kiessling F, Hennink WE, Lammers T. Core-Crosslinked Polymeric micelles: ideas, Preparation, Biomedical Functions and scientific translation. Nano At the moment. 2015;10(1):93–117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venditto VJ, Szoka FC Jr. Most cancers nanomedicines: so many papers and so few medicine! Adv Drug Deliv Rev. 2013;65(1):80–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug supply. Nat Mater. 2013;12(11):991–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar H, Meng F, Cheng R, Deng C, Zhong Z. Discount-sensitive degradable micellar nanoparticles as good and intuitive supply methods for most cancers chemotherapy. Professional Opin Drug Deliv. 2013;10(8):1109–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng F, Hennink WE, Zhong Z. Discount-sensitive polymers and bioconjugates for biomedical purposes. Biomaterials. 2009;30(12):2180–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novakova J, Slaby O, Vyzula R, Michalek J. MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun. 2009;386(1):1–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa PM, Cardoso AL, Nobrega C, Pereira de Almeida LF, Bruce JN, Canoll P, et al. MicroRNA-21 silencing enhances the cytotoxic impact of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet. 2013;22(5):904–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong CG, Wu WK, Feng SY, Wang XJ, Shao JF, Qiao J. Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int J Oncol. 2012;41(3):1005–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa PM, Cardoso AL, Mendonca LS, Serani A, Custodia C, Conceicao M, et al. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid supply to Glioblastoma cells: a Promising System for Glioblastoma Therapy. Mol Ther Nucleic Acids. 2013;2(6):e100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion through matrix metalloproteinase-2. J Biol Chem. 2003;278(6):4135–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal Okay, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular most cancers. Gastroenterology. 2007;133(2):647–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, et al. MicroRNA-21 promotes cell transformation by focusing on the programmed cell demise 4 gene. Oncogene. 2008;27(31):4373–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni J, Miao T, Su M, Khan NU, Ju X, Chen H, et al. PSMA-targeted nanoparticles for particular penetration of blood-brain tumor barrier and mixed remedy of mind metastases. J Management Launch. 2021;329:934–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, et al. Mind metastases. Nat Rev Dis Primers. 2019;5(1):5.

    Article 
    PubMed 

    Google Scholar
     

  • Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic habits of breast most cancers subtypes. J Clin Oncol. 2010;28(20):3271–7.

    Article 
    PubMed 

    Google Scholar
     

  • Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, et al. Lapatinib distribution in HER2 overexpressing experimental mind metastases of breast most cancers. Pharm Res. 2012;29(3):770–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental mind metastases of breast most cancers. Clin Most cancers Res. 2010;16(23):5664–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasoha M, Unger C, Solomayer EF, Bohle RM, Zaharia C, Khreich F, et al. Prostate-specific membrane antigen (PSMA) expression in breast most cancers and its metastases. Clin Exp Metastasis. 2017;34(8):479–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nomura N, Pastorino S, Jiang P, Lambert G, Crawford JR, Gymnopoulos M, et al. Prostate particular membrane antigen (PSMA) expression in main gliomas and breast most cancers mind metastases. Most cancers Cell Int. 2014;14(1):26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meher N, VanBrocklin HF, Wilson DM, Flavell RR. PSMA-Focused nanotheranostics for imaging and radiotherapy of prostate Most cancers. Prescription drugs (Basel). 2023;16(2).

  • Xu X, Wu J, Liu Y, Noticed PE, Tao W, Yu M, et al. Multifunctional envelope-type siRNA supply nanoparticle platform for prostate Most cancers remedy. ACS Nano. 2017;11(3):2618–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paasonen L, Sharma S, Braun GB, Kotamraju VR, Chung TD, She ZG, et al. New p32/gC1qR ligands for focused Tumor Drug Supply. ChemBioChem. 2016;17(7):570–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovinger DM. Communication networks within the mind: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res Well being. 2008;31(3):196–214.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorman AM. Neuronal cell demise in neurodegenerative ailments: recurring themes round protein dealing with. J Cell Mol Med. 2008;12(6A):2263–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative ailments: from Stressor thresholds to degeneration. Neuron. 2011;71(1):35–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher A. Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: views and challenges in therapy of Alzheimer’s illness. J Neurochem. 2012;120(Suppl 1):22–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, et al. Involvement of Striatal Cholinergic Interneurons and M1 and M4 muscarinic receptors in motor signs of Parkinson’s Illness. J Neurosci. 2016;36(35):9161–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Chica J, WK DP, Tanabe S, Serra D, Herrero L, Casals N, et al. An summary of nanomedicines for neuron focusing on. Nanomed (Lond). 2020;15(16):1617–36.

    Article 
    CAS 

    Google Scholar
     

  • Babazadeh A, Mohammadi Vahed F, Jafari SM. Nanocarrier-mediated mind supply of bioactives for therapy/prevention of neurodegenerative ailments. J Management Launch. 2020;321:211–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernando S, Gartziandia O, Herran E, Pedraz JL, Igartua M, Hernandez RM. Advances in nanomedicine for the therapy of Alzheimer’s and Parkinson’s ailments. Nanomed (Lond). 2016;11(10):1267–85.

    Article 
    CAS 

    Google Scholar
     

  • Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF operate and intracellular signaling in neurons. Histol Histopathol. 2010;25(2):237–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramsey JD, Flynn NH. Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther. 2015;154:78–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A. 1991;88(5):1864–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pino-Angeles A, Lazaridis T. Results of peptide cost, orientation, and focus on Melittin Transmembrane pores. Biophys J. 2018;114(12):2865–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian S, Heller WT. Melittin-induced ldl cholesterol reorganization in lipid bilayer membranes. Biochim Biophys Acta. 2015;1848(10 Pt A):2253–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Upadhya A, Sangave PC. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are essential for steady non-covalent complexation and intracellular supply. J Pept Sci. 2016;22(10):647–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo supply of therapeutic proteins utilizing cell penetrating peptides. Peptides. 2017;87:50–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takayama Okay, Nakase I, Michiue H, Takeuchi T, Tomizawa Okay, Matsui H, et al. Enhanced intracellular supply utilizing arginine-rich peptides by the addition of penetration accelerating sequences (pas). J Management Launch. 2009;138(2):128–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takayama Okay, Hirose H, Tanaka G, Pujals S, Katayama S, Nakase I, et al. Impact of the attachment of a penetration accelerating sequence and the affect of hydrophobicity on octaarginine-mediated intracellular supply. Mol Pharm. 2012;9(5):1222–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from Primary Analysis to clinics. Developments Pharmacol Sci. 2017;38(4):406–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milletti F. Cell-penetrating peptides: courses, origin, and present panorama. Drug Discov At the moment. 2012;17(15–16):850–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida T, Tomioka I, Nagahara T, Holyst T, Sawada M, Hayes P, et al. Bax-inhibiting peptide derived from mouse and rat Ku70. Biochem Biophys Res Commun. 2004;321(4):961–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez JA, Gama V, Yoshida T, Solar W, Hayes P, Leskov Okay, et al. Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem Soc Trans. 2007;35(Pt 4):797–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frankel AD, Pabo CO. Mobile uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon MJ, Gao S, Kang WH, Banta S, Morrison B. third. TAT-mediated intracellular protein supply to main mind cells depends on glycosaminoglycan expression. Biotechnol Bioeng. 2009;104(1):10–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristensen M, Birch D, Morck Nielsen H. Functions and challenges for Use of cell-penetrating peptides as supply vectors for peptide and protein cargos. Int J Mol Sci 2016;17(2).

  • Tosi G, Ruozi B, Belletti D, Vilella A, Zoli M, Vandelli MA, et al. Mind-targeted polymeric nanoparticles: in vivo proof of various routes of administration in rodents. Nanomed (Lond). 2013;8(9):1373–83.

    Article 
    CAS 

    Google Scholar
     

  • Yan X, Mohankumar PS, Dietzschold B, Schnell MJ, Fu ZF. The Rabies virus glycoprotein determines the distribution of various rabies virus strains within the mind. J Neurovirol. 2002;8(4):345–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lafon M. Rabies virus receptors. J Neurovirol. 2005;11(1):82–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torashima T, Koyama C, Iizuka A, Mitsumura Okay, Takayama Okay, Yanagi S, et al. Lentivector-mediated rescue from cerebellar ataxia in a mouse mannequin of spinocerebellar ataxia. EMBO Rep. 2008;9(4):393–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev. 2018;98(1):239–389.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton NB, Attwell D. Do astrocytes actually exocytose neurotransmitters? Nat Rev Neurosci. 2010;11(4):227–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged associate. Developments Neurosci. 1999;22(5):208–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, et al. Focused deletion in astrocyte intermediate filament (gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996;93(13):6361–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araque A, Carmignoto G, Haydon PG. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 2001;63:795–813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.

    Article 
    PubMed 

    Google Scholar
     

  • Pekny M, Wilhelmsson U, Pekna M. The twin position of astrocyte activation and reactive gliosis. Neurosci Lett. 2014;565:30–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phatnani H, Maniatis T. Astrocytes in neurodegenerative illness. Chilly Spring Harb Perspect Biol. 2015;7(6).

  • Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T, et al. Engineered lentiviral vector focusing on astrocytes in vivo. Glia. 2009;57(6):667–79.

    Article 
    PubMed 

    Google Scholar
     

  • Delzor A, Escartin C, Deglon N. Lentiviral vectors: a strong device to focus on astrocytes in vivo. Curr Drug Targets. 2013;14(11):1336–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in mind. Physiol Rev. 2013;93(4):1543–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubbard JA, Szu JI, Binder DK. The position of aquaporin-4 in synaptic plasticity, reminiscence and illness. Mind Res Bull. 2018;136:118–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells J, Kilburn MR, Shaw JA, Bartlett CA, Harvey AR, Dunlop SA, et al. Early in vivo modifications in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial damage to the optic nerve. J Neurosci Res. 2012;90(3):606–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three completely different matrices by wholesome topics. Clin Biochem. 2003;36(1):79–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walle T, Hsieh F, DeLegge MH, Oatis JE Jr., Walle UK. Excessive absorption however very low bioavailability of oral resveratrol in people. Drug Metab Dispos. 2004;32(12):1377–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Ma Z, Zou W, Guo H, Liu M, Ma Y, et al. The suitable marker for astrocytes: evaluating the distribution and expression of three astrocytic markers in numerous mouse cerebral areas. Biomed Res Int. 2019;2019:9605265.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Liu X, Liu T, Liu H, Tong L, Jia S, et al. Neurochemical regulation of the expression and performance of glial fibrillary acidic protein in astrocytes. Glia. 2020;68(5):878–97.

    Article 
    PubMed 

    Google Scholar
     

  • Jean M, Gera L, Charest-Morin X, Marceau F, Bachelard H. In vivo results of Bradykinin B2 receptor agonists with various susceptibility to Peptidases. Entrance Pharmacol. 2015;6:306.

    PubMed 

    Google Scholar
     

  • Gregnani MF, Hungaro TG, Martins-Silva L, Bader M, Araujo RC. Bradykinin B2 receptor signaling will increase glucose uptake and oxidation: proof and open questions. Entrance Pharmacol. 2020;11:1162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cholewinski AJ, Stevens G, McDermott AM, Wilkin GP. Identification of B2 bradykinin binding websites on cultured cortical astrocytes. J Neurochem. 1991;57(4):1456–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephens GJ, Cholewinski AJ, Wilkin GP, Djamgoz MB. Calcium-mobilizing and electrophysiological results of bradykinin on cortical astrocyte subtypes in tradition. Glia. 1993;9(4):269–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, et al. Glutamate-dependent neuroglial calcium signaling differs between younger and grownup mind. Science. 2013;339(6116):197–200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baslow MH. The astrocyte floor NAAG receptor and NAAG peptidase signaling advanced as a therapeutic goal. Drug Information Perspect. 2008;21(5):251–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Lao Okay, Qiu Z, Rahman MS, Zhang Y, Gou X. Potential astrocytic receptors and transporters within the pathogenesis of Alzheimer’s Illness. J Alzheimers Dis. 2019;67(4):1109–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang J, Takeuchi H, Doi Y, Kawanokuchi J, Sonobe Y, Jin S, et al. Excitatory amino acid transporter expression by astrocytes is neuroprotective in opposition to microglial excitotoxicity. Mind Res. 2008;1210:11–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The position of the tripartite glutamatergic synapse within the pathophysiology of Alzheimer’s illness. Getting old Dis. 2015;6(2):131–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dezsi L, Tuka B, Martos D, Vecsei L. Alzheimer’s illness, astrocytes and kynurenines. Curr Alzheimer Res. 2015;12(5):462–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rickmann M, Wolff JR. S100 protein expression in subpopulations of neurons of rat mind. Neuroscience. 1995;67(4):977–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhu J, Xu H, Yi Q, Yan L, Ye L, et al. Time-Dependent internalization of S100B by mesenchymal stem cells through the pathways of Clathrin- and lipid raft-mediated endocytosis. Entrance Cell Dev Biol. 2021;9:674995.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter L, Stella N. Cannabinoids and neuroinflammation. Br J Pharmacol. 2004;141(5):775–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay TL, Savage JC, Hui CW, Bisht Okay, Tremblay ME. Microglia throughout the lifespan: from origin to operate in mind improvement, plasticity and cognition. J Physiol. 2017;595(6):1929–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia-neuron communication in Well being and Illness. Entrance Cell Neurosci. 2018;12:323.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Y, Xie L, Chung CY. Signaling pathways Controlling Microglia Chemotaxis. Mol Cells. 2017;40(3):163–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Jin MZ, Yang ZY, Jin WL. Microglia in neurodegenerative ailments. Neural Regen Res. 2021;16(2):270–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Presumey J, Bialas AR, Carroll MC. Complement system in neural synapse elimination in Improvement and Illness. Adv Immunol. 2017;135:53–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borst Okay, Schwabenland M, Prinz M. Microglia metabolism in well being and illness. Neurochem Int. 2019;130:104331.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Mastorakos P, Mishra MK, Mangraviti A, Hwang L, Zhou J, et al. Uniform mind tumor distribution and tumor related macrophage focusing on of systemically administered dendrimers. Biomaterials. 2015;52:507–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I, et al. Polymeric nanoparticle system to focus on activated microglia/macrophages in spinal wire damage. J Management Launch. 2014;174:15–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nance E, Porambo M, Zhang F, Mishra MK, Buelow M, Getzenberg R, et al. Systemic dendrimer-drug therapy of ischemia-induced neonatal white matter damage. J Management Launch. 2015;214:112–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duffy CM, Ahmed S, Yuan C, Mavanji V, Nixon JP, Butterick T. Microglia as a surrogate Biosensor to find out nanoparticle neurotoxicity. J Vis Exp 2016(116).

  • Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, et al. A assessment of nanoparticle performance and toxicity on the central nervous system. J R Soc Interface. 2010;7(Suppl 4):S411–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91(2):461–553.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkinson Okay, El Khoury J. Microglial scavenger receptors and their roles within the pathogenesis of Alzheimer’s illness. Int J Alzheimers Dis. 2012;2012:489456.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lue LF, Walker DG, Brachova L, Seaside TG, Rogers J, Schmidt AM, et al. Involvement of microglial receptor for superior glycation endproducts (RAGE) in Alzheimer’s illness: identification of a mobile activation mechanism. Exp Neurol. 2001;171(1):29–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teismann P, Sathe Okay, Bierhaus A, Leng L, Martin HL, Bucala R, et al. Receptor for superior glycation endproducts (RAGE) deficiency protects in opposition to MPTP toxicity. Neurobiol Getting old. 2012;33(10):2478–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Function of Microglia TLRs in Neurodegeneration. Entrance Cell Neurosci. 2018;12:329.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honarpisheh P, Lee J, Banerjee A, Blasco-Conesa MP, Honarpisheh P, d’Aigle J, et al. Potential caveats of putative microglia-specific markers for evaluation of age-related cerebrovascular neuroinflammation. J Neuroinflammation. 2020;17(1):366.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurga AM, Paleczna M, Kuter KZ. Overview of Common and discriminating markers of Differential Microglia phenotypes. Entrance Cell Neurosci. 2020;14:198.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soh M, Kang DW, Jeong HG, Kim D, Kim DY, Yang W, et al. Ceria-Zirconia nanoparticles as an enhanced multi-antioxidant for Sepsis Therapy. Angew Chem Int Ed Engl. 2017;56(38):11399–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13(9):621–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung H, Brazil MI, Irizarry MC, Hyman BT, Maxfield FR. Uptake of fibrillar beta-amyloid by microglia remoted from MSR-A (kind I and kind II) knockout mice. NeuroReport. 2001;12(6):1151–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Khoury JB, Moore KJ, Means TK, Leung J, Terada Okay, Toft M, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med. 2003;197(12):1657–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannahan JH, Bai W, Brown JM. Implications of scavenger receptors within the protected improvement of nanotherapeutics. Receptors Clin Investig. 2015;2(3):e811.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silverstein RL, Febbraio M. CD36, a scavenger receptor concerned in immunity, metabolism, angiogenesis, and habits. Sci Sign. 2009;2(72):re3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konishi H, Kobayashi M, Kunisawa T, Imai Okay, Sayo A, Malissen B, et al. Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes. Glia. 2017;65(12):1927–43.

    Article 
    PubMed 

    Google Scholar
     

  • Murai N, Mitalipova M, Jaenisch R. Useful evaluation of CX3CR1 in human induced pluripotent stem (iPS) cell-derived microglia-like cells. Eur J Neurosci. 2020;52(7):3667–78.

    Article 
    PubMed 

    Google Scholar
     

  • Duveau A, Bertin E, Boue-Grabot E. Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Issues. Neurosci Bull. 2020;36(11):1327–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med. 2018;10(8).

  • Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in improvement, myelin Technology and Past. Cells. 2019;8(11).

  • Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):37–53.

    Article 
    PubMed 

    Google Scholar
     

  • Jin GZ, Chakraborty A, Lee JH, Knowles JC, Kim HW. Concentrating on with nanoparticles for the therapeutic therapy of mind ailments. J Tissue Eng. 2020;11:2041731419897460.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munzel EJ, Williams A. Selling remyelination in a number of sclerosis-recent advances. Medicine. 2013;73(18):2017–29.

    Article 
    PubMed 

    Google Scholar
     

  • Somkuwar SS, Staples MC, Galinato MH, Fannon MJ, Mandyam CD. Function of NG2 expressing cells in dependancy: a brand new method for an outdated drawback. Entrance Pharmacol. 2014;5:279.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warrington AE, Asakura Okay, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a mannequin of a number of sclerosis. Proc Natl Acad Sci U S A. 2000;97(12):6820–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nastasijevic B, Wright BR, Smestad J, Warrington AE, Rodriguez M, Maher LJ. third. Remyelination induced by a DNA aptamer in a mouse mannequin of a number of sclerosis. PLoS ONE. 2012;7(6):e39595.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlak SM, Schendel LC, Gaub HE, Bernardi RC. Streptavidin/biotin: tethering geometry defines unbinding mechanics. Sci Adv. 2020;6(13):eaay5999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantinescu CS, Farooqi N, O’Brien Okay, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a mannequin for a number of sclerosis (MS). Br J Pharmacol. 2011;164(4):1079–106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goncalves JT, Schafer ST, Gage FH. Grownup neurogenesis within the Hippocampus: from stem cells to Conduct. Cell. 2016;167(4):897–914.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valero J, Bernardino L, Cardoso FL, Silva AP, Fontes-Ribeiro C, Ambrosio AF, et al. Affect of Neuroinflammation on hippocampal neurogenesis: relevance to growing older and Alzheimer’s Illness. J Alzheimers Dis. 2017;60(s1):S161–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC. The growing older neurogenic subventricular zone. Getting old Cell. 2006;5(2):139–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu SZ, Szeto V, Bao MH, Solar HS, Feng ZP. Pharmacological approaches selling stem cell-based remedy following ischemic stroke insults. Acta Pharmacol Sin. 2018;39(5):695–712.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vukovic J, Blackmore DG, Jhaveri D, Bartlett PF. Activation of neural precursors within the grownup neurogenic niches. Neurochem Int. 2011;59(3):341–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi M, Saito H, Suzuki M, Mori Okay. Visualization of neurogenesis within the central nervous system utilizing nestin promoter-GFP transgenic mice. NeuroReport. 2000;11(9):1991–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lepinoux-Chambaud C, Barreau Okay, Eyer J. The neurofilament-derived peptide NFL-TBS.40–63 targets neural stem cells and impacts their Properties. Stem Cells Transl Med. 2016;5(7):901–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lepinoux-Chambaud C, Eyer J. The NFL-TBS.40–63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis. Int J Pharm. 2013;454(2):738–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan Y, Marioli M, Zhang Okay. Analytical characterization of liposomes and different lipid nanoparticles for drug supply. J Pharm Biomed Anal. 2021;192:113642.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltonen L. Sensible tips for the characterization and high quality management of pure drug nanoparticles and nano-cocrystals within the pharmaceutical business. Adv Drug Deliv Rev. 2018;131:101–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinod C, Jena S, Nano-Neurotheranostics. Affect of nanoparticles on neural dysfunctions and methods to cut back toxicity for Improved Efficacy. Entrance Pharmacol. 2021;12:612692.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naqvi S, Panghal A, Flora SJS. Nanotechnology: a Promising Method for Supply of neuroprotective medicine. Entrance Neurosci. 2020;14:494.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao H. Progress and views on focusing on nanoparticles for mind drug supply. Acta Pharm Sin B. 2016;6(4):268–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly IB third, Fletcher RB, McBride JR, Weiss SM, Duvall CL. Tuning composition of polymer and porous Silicon Composite nanoparticles for early endosome escape of Anti-microRNA peptide nucleic acids. ACS Appl Mater Interfaces. 2020;12(35):39602–11.

  • Rodenak-Kladniew B, Islan GA, de Bravo MG, Duran N, Castro GR. Design, characterization and in vitro analysis of linalool-loaded stable lipid nanoparticles as potent device in most cancers remedy. Colloids Surf B Biointerfaces. 2017;154:123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A et al. Affect of particle dimension and Polydispersity Index on the scientific purposes of Lipidic Nanocarrier methods. Pharmaceutics. 2018;10(2).

  • Vega-Villa KR, Takemoto JK, Yanez JA, Remsberg CM, Forrest ML, Davies NM. Scientific toxicities of nanocarrier methods. Adv Drug Deliv Rev. 2008;60(8):929–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a case research of cationic, anionic, and impartial liposomes. Anal Bioanal Chem. 2017;409(24):5779–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo Y, Yang H, Zhou YF, Hu B. Twin and multi-targeted nanoparticles for site-specific mind drug supply. J Management Launch. 2020;317:195–215.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marques-Gallego P, de Kroon AI. Ligation methods for focusing on liposomal nanocarriers. Biomed Res Int. 2014;2014:129458.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman AD, Claypool SE, Liu R. The good focusing on of nanoparticles. Curr Pharm Des. 2013;19(35):6315–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi Y, Cho BK, Seok SH, Kim C, Ryu JH, Kwon IC. Managed spatial traits of ligands on nanoparticles: determinant of mobile capabilities. J Management Launch. 2023;360:672–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rana S, Yeh YC, Rotello VM. Engineering the nanoparticle-protein interface: purposes and potentialities. Curr Opin Chem Biol. 2010;14(6):828–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up applied sciences: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and purposes. Nanoscale Res Lett. 2013;8(1):102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner A, Vorauer-Uhl Okay. Liposome know-how for industrial functions. J Drug Deliv. 2011;2011:591325.

    Article 
    PubMed 

    Google Scholar
     

  • Kwon HJ, Shin Okay, Soh M, Chang H, Kim J, Lee J, et al. Giant-scale synthesis and medical purposes of uniform-sized steel oxide nanoparticles. Adv Mater. 2018;30(42):e1704290.

    Article 
    PubMed 

    Google Scholar