Sunday, June 23, 2024
HomeNanotechnologyNanoparticles for inducing Gaucher disease-like harm in most cancers cells

Nanoparticles for inducing Gaucher disease-like harm in most cancers cells


  • Bartman, C. R. et al. Sluggish TCA flux and ATP manufacturing in main stable tumours however not metastases. Nature 614, 349–357 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringel, A. E. et al. Weight problems shapes metabolism within the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and most cancers development. Science 368, eaaw5473 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanarek, N., Petrova, B. & Sabatini, D. M. Dietary modifications for enhanced most cancers remedy. Nature 579, 507–517 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. & Guan, Okay.-L. mTOR as a central hub of nutrient signalling and cell development. Nat. Cell Biol. 21, 63–71 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vernieri, C. et al. Fasting-mimicking weight loss program is secure and reshapes metabolism and antitumor immunity in sufferers with most cancers. Most cancers Discov. 12, 90–107 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaziri-Gohar, A. et al. Restricted nutrient availability within the tumor microenvironment renders pancreatic tumors delicate to allosteric IDH1 inhibitors. Nat. Most cancers 3, 852–865 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, J. C. et al. Everolimus for superior pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C.-H. et al. Metabolic competitors within the tumor microenvironment is a driver of most cancers development. Cell 162, 1229–1241 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and most cancers: molecular mechanisms and medical software. Nat. Rev. Most cancers 18, 707–719 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spotten, L. E. et al. Subjective and goal style and odor modifications in most cancers. Ann. Oncol. 28, 969–984 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and most cancers cachexia. Nature 513, 100–104 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, A. Okay. & Acharyya, S. Understanding cachexia within the context of metastatic development. Nat. Rev. Most cancers 20, 274–284 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in most cancers. Nat. Rev. Most cancers 20, 743–756 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McIntyre, A. & Harris, A. L. Metabolic and hypoxic adaptation to anti-angiogenic remedy: a goal for induced essentiality. EMBO Mol. Med. 7, 368–379 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Jiménez, C. & Goding, C. R. Hunger and pseudo-starvation as drivers of most cancers metastasis by means of translation reprogramming. Cell Metab. 29, 254–267 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Barton, M. Okay. Most cancers cachexia consciousness, prognosis, and therapy are missing amongst oncology suppliers. CA Most cancers J. Clin. 67, 91–92 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pandey, M. Okay. et al. Complement drives glucosylceramide accumulation and tissue irritation in Gaucher illness. Nature 543, 108–112 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mistry, P. Okay. et al. Impact of oral eliglustat on splenomegaly in sufferers with Gaucher illness sort 1: the ENGAGE randomized medical trial. J. Am. Med. Assoc. 313, 695–706, (2015).

    Article 
    CAS 

    Google Scholar
     

  • Akiyama, H., Kobayashi, S., Hirabayashi, Y. & Murakami-Murofushi, Okay. Ldl cholesterol glucosylation is catalyzed by transglucosylation response of β-glucosidase 1. Biochem. Biophys. Res. Commun. 441, 838–843 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aerts, J. M. F. G. et al. Glycosphingolipids and lysosomal storage issues as illustrated by Gaucher illness. Curr. Opin. Chem. Biol. 53, 204–215 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Floor, M. et al. Plasma glucosylsphingosine in GBA1 mutation carriers with and with out Parkinson’s illness. Mov. Disord. 37, 416–421 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akiyama, H. et al. Glucocerebrosidases catalyze a transgalactosylation response that yields a newly-identified mind sterol metabolite, galactosylated ldl cholesterol. J. Biol. Chem. 295, 5257–5277 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco, R., Sánchez-Arias, J. A., Navarro, G. & Lanciego, J. L. Glucocerebrosidase mutations and synucleinopathies. Potential function of sterylglucosides and relevance of learning each GBA1 and GBA2 genes. Entrance. Neuroanat. 12, 52 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimamura, M. Construction, metabolism and organic features of steryl glycosides in mammals. Biochem. J. 477, 4243–4261 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marques, A. R. A. et al. Glucosylated ldl cholesterol in mammalian cells and tissues: formation and degradation by a number of mobile β-glucosidases. J. Lipid Res. 57, 451–463 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kałużna, M., Trzeciak, I., Ziemnicka, Okay., Machaczka, M. & Ruchała, M. Endocrine and metabolic issues in sufferers with Gaucher illness sort 1: a evaluation. Orphanet J. Uncommon Dis. 14, 275 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karpa, M. J., Duggan, P. J., Griffin, G. J. & Freudigmann, S. J. Aggressive transport of decreasing sugars by means of a lipophilic membrane facilitated by aryl boron acids. Tetrahedron 53, 3669–3678 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J.-Y. et al. Acidity-responsive gene supply for “superfast” nuclear translocation and transfection with excessive effectivity. Biomaterials 83, 79–92 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, H., Chen, W., Smeekens, J. M. & Wu, R. An enrichment technique based mostly on synergistic and reversible covalent interactions for large-scale evaluation of glycoproteins. Nat. Commun. 9, 1692 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakh, N. A. et al. Glucose-responsive insulin by molecular and bodily design. Nat. Chem. 9, 937–944 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riscal, R., Skuli, N. & Simon, M. C. Even most cancers cells watch their ldl cholesterol! Mol. Cell 76, 220–231 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curry, S., Mandelkow, H., Brick, P. & Franks, N. Crystal construction of human serum albumin complexed with fatty acid reveals an uneven distribution of binding websites. Nat. Struct. Biol. 5, 827–835 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, P. et al. Mobile ldl cholesterol immediately prompts Smoothened in Hedgehog signaling. Cell 166, 1176–1187 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castellano, B. M. et al. Lysosomal ldl cholesterol prompts mTORC1 through an SLC38A9–Niemann–Decide C1 signaling complicated. Science 355, 1306–1311 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortes, J. et al. Pembrolizumab plus chemotherapy in superior triple-negative breast most cancers. N. Engl. J. Med. 387, 217–226 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birn, H. et al. Cubilin is an albumin binding protein vital for renal tubular albumin reabsorption. J. Clin. Investig. 105, 1353–1361 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q., Wang, L., Yu, H., Wang, J. & Chen, Z. Group of glucose-responsive programs and their properties. Chem. Rev. 111, 7855–7875 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, O. G. et al. Epigenomic reprogramming throughout pancreatic most cancers development hyperlinks anabolic glucose metabolism to distant metastasis. Nat. Genet. 49, 367–376 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H.-J., Russo, J., Kohwi, Y. & Kohwi-Shigematsu, T. SATB1 reprogrammes gene expression to advertise breast tumour development and metastasis. Nature 452, 187–193 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J., Yang, H. & Track, B.-L. Mechanisms and regulation of ldl cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baixauli, F. et al. Mitochondrial respiration controls lysosomal perform throughout inflammatory T cell responses. Cell Metab. 22, 485–498 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Asab, M. S. et. al. in Advances in Imaginative and prescient Analysis Vol. I Necessities in Ophthalmology (eds Prakash, G. & Iwata, T.) 413–423 (Springer, 2017).

  • Zigdon, H. et al. Altered lysosome distribution is an early neuropathological occasion in neurological types of Gaucher illness. FEBS Lett. 591, 774–783 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura, N. et al. Viable neuronopathic Gaucher illness mannequin in medaka (Oryzias latipes) shows axonal accumulation of alpha-synuclein. PLoS Genet. 11, e1005065 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Platt, F. M. Sphingolipid lysosomal storage issues. Nature 510, 68–75 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantuti-Castelvetri, L. et al. Faulty ldl cholesterol clearance limits remyelination within the aged central nervous system. Science 359, 684–688 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaravadi, R. Okay., Kimmelman, A. C. & Debnath, J. Focusing on autophagy in most cancers: latest advances and future instructions. Most cancers Discov. 9, 1167–1181 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galluzzi, L. & Inexperienced, D. R. Autophagy-independent features of the autophagy equipment. Cell 177, 1682–1699 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimmey, J. M. et al. Distinctive function for ATG5 in neutrophil-mediated immunopathology throughout M. tuberculosis an infection. Nature 528, 565–569 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martina, J. A., Raben, N. & Puertollano, R. SnapShot: lysosomal storage illnesses. Cell 180, 602–602 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Leo, M. G. et al. Autophagosome–lysosome fusion triggers a lysosomal response mediated by TLR9 and managed by OCRL. Nat. Cell Biol. 18, 839–850 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. Y. & Sabatini, D. M. mTOR on the nexus of vitamin, development, ageing and illness. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jouandin, P. et al. Lysosomal cystine mobilization shapes the response of TORC1 and tissue development to fasting. Science 375, eabc4203 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS indicators ldl cholesterol sufficiency to mTORC1. Science 0, eabg6621 (2022).


    Google Scholar
     

  • Rogala, Okay. B. et al. Structural foundation for the docking of mTORC1 on the lysosomal floor. Science 366, 468–475 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Araujo, M. E. G. et al. Crystal construction of the human lysosomal mTORC1 scaffold complicated and its influence on signaling. Science 358, 377–381 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pineda, CarlosT. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715–728 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux important amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bockaert, J. & Marin, P. mTOR in Mind Physiology and Pathologies. Physiol. Rev. 95, 1157–1187 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Gool, R. et al. Focusing on neurological abnormalities in lysosomal storage illnesses. Tendencies Pharmacol. Sci. 43, 495–509 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cang, C. et al. mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell 152, 778–790 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwörer, S., Vardhana, S. A. & Thompson, C. B. Most cancers Metabolism Drives a Stromal Regenerative Response. Cell Metab. 29, 576–591 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannauje, P. Okay., Pandit, V., Wasnik, P. N., Gupta, A. Okay. & Venkatesan, N. Gaucher’s Illness in an Grownup Feminine: A Uncommon Entity. Cureus 13, e17318 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Strategies for drug supply comprising unfolding and refolding proteins and peptide nanoparticles. World Mental Property Group. Worldwide software revealed with the worldwide search report, patent WO2011019585A1 (2010).

  • Yue, C. et al. Lengthy-term and liver-selected ginsenoside C-Okay nanoparticles retard NAFLD development by restoring lipid homeostasis. Biomaterials 301, 122291 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spandidos, A., Wang, X., Wang, H. & Seed, B. PrimerBank: a useful resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 38, D792–D799 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 replace. Nucleic Acids Res. 46, W537–W544 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, J., Gill, E. E. & Hancock, R. E. W. NetworkAnalyst for statistical, visible and network-based meta-analysis of gene expression information. Nat. Protoc. 10, 823–844 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A constructive/destructive ion-switching, focused mass spectrometry–based mostly metabolomics platform for bodily fluids, cells, and contemporary and glued tissue. Nat. Protoc. 7, 872–881 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomoni, F. et al. Workflow4Metabolomics: a collaborative analysis infrastructure for computational metabolomics. Bioinformatics 31, 1493–1495 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, P. S. et al. Mannose impairs tumour development and enhances chemotherapy. Nature 563, 719–723 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced internet server for large-scale expression profiling and interactive evaluation. Nucleic Acids Res. 47, W556–W560 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments