Friday, May 24, 2024
HomeNanotechnologySuperionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics

Superionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics


  • Kingon, A. I., Maria, J.-P. & Streiffer, S. Ok. Various dielectrics to silicon dioxide for reminiscence and logic gadgets. Nature 406, 1032–1038 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caviglia, A. D. et al. Electrical subject management of the LaAlO3/SrTiO3 interface floor state. Nature 456, 624–627 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for superior transistors. Nature 604, 65–71 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alam, M. A., Smith, R. Ok., Weir, B. E. & Silverman, P. J. Uncorrelated breakdown of built-in circuits. Nature 420, 378 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Electrode materials–ionic liquid coupling for electrochemical power storage. Nat. Rev. Mater. 5, 787–808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic floor state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. J. et al. Controlling many-body states by the electric-field impact in a two-dimensional materials. Nature 534, 185–189 (2016).

    Article 

    Google Scholar
     

  • Leighton, C. Electrolyte-based ionic management of practical oxides. Nat. Mater. 18, 13–18 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, H. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors primarily based on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Excessive-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 on the pair quantum resistance. Nature 472, 458–460 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C.-L. et al. Gate-induced metallic–insulator transition in MoS2 by stable superionic conductor LaF3. Nano Lett. 18, 2387–2392 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for rising purposes. Nat. Nanotechnol. 10, 924–936 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y.-C. et al. An excellent cryogenic magnetic coolant: magnetic and magnetocaloric examine of ferromagnetically coupled GdF3. J. Mater. Chem. C 3, 12206–12211 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Motohashi, Ok., Nakamura, T., Kimura, Y., Uchimoto, Y. & Amezawa, Ok. Affect of microstructures on conductivity in tysonite-type fluoride ion conductors. Stable State Ion. 338, 113–120 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mattsson, S. & Paulus, B. Density practical idea calculations of structural, digital, and magnetic properties of the threed metallic trifluorides MF3 (M = Ti-Ni) within the stable state. J. Comput. Chem. 40, 1190–1197 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higuchi, T. & Kuwata-Gonokami, M. Management of antiferromagnetic area distribution through polarization-dependent optical annealing. Nat. Commun. 7, 10720 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital gadgets. Nat. Electron. 2, 563–571 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Britnell, L. et al. Electron tunneling via ultrathin boron nitride crystalline boundaries. Nano Lett. 12, 1707–1710 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vexler, M. I., Illarionov, Y. Y., Suturin, S. M., Fedorov, V. V. & Sokolov, N. S. Tunneling of electrons with conservation of the transverse wave vector within the Au/CaF2/Si(111) system. Phys. Stable State 52, 2357–2363 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Iwai, H. et al. Superior gate dielectric supplies for sub-100 nm CMOS. Dig. Int. Electron Units Assembly 625–628 (2002).

  • Wang, X. et al. Improved integration of ultra-thin high-κ dielectrics in few-layer MoS2 FET by distant forming gasoline plasma pretreatment. Appl. Phys. Lett. 110, 053110 (2017).

    Article 

    Google Scholar
     

  • Huang, J.-Ok. et al. Excessive-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, X. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 26, 6255–6261 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Design ideas for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhn, A., Duppel, V. & Lotsch, B. V. Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Power Environ. Sci. 6, 3548–3552 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bron, P. et al. Li10SnP2S12: an inexpensive lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiteley, J. M., Woo, J. H., Hu, E., Nam, Ok.-W. & Lee, S.-H. Empowering the lithium metallic battery via a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014).

    Article 

    Google Scholar
     

  • Seino, Y., Ota, T., Takada, Ok., Hayashi, A. & Tatsumisago, M. A sulphide lithium tremendous ion conductor is superior to liquid ion conductors to be used in rechargeable batteries. Power Environ. Sci. 7, 627–631 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z., Liu, Z., Dudney, N. J. & Liang, C. Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7, 2829–2833 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murayama, M., Sonoyama, N., Yamada, A. & Kanno, R. Materials design of recent lithium ionic conductor, thio-LISICON, within the Li2S–P2S5 system. Stable State Ion. 170, 173–180 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. A local oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Robertson, J. Excessive dielectric fixed oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Sachid, A. B. et al. Monolithic 3D CMOS utilizing layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, L. et al. Heterogeneous complementary field-effect transistors primarily based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023).

    CAS 

    Google Scholar
     

  • Kang, W.-M., Cho, I.-T., Roh, J., Lee, C. & Lee, J.-H. Excessive-gain complementary metal-oxide-semiconductor inverter primarily based on multi-layer WSe2 subject impact transistors with out doping. Semicond. Sci. Technol. 31, 105001 (2016).

    Article 

    Google Scholar
     

  • Koenig, S. P. et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16, 2145–2151 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary digital gadgets. Adv. Mater. 30, 1804470 (2018).

    Article 

    Google Scholar
     

  • Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wachter, S. et al. A microprocessor primarily based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, B. et al. Manipulating high-temperature superconductivity by oxygen doping in Bi2Sr2CaCu2O8+δ skinny flakes. Natl Sci. Rev. 9, nwac089 (2022).

  • Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic management of the evolution from a superconducting part to an insulating part in ultrathin YBa2Cu3O7–x movies. Phys. Rev. Lett. 107, 027001 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liao, M. et al. Superconductor–insulator transitions in exfoliated Bi2Sr2CaCu2O8+δ flakes. Nano Lett. 18, 5660–5665 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations together with alternate and correlation results. Phys. Rev. 140, A1133–A1138 (1965).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab initio whole power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments